
# College of Engineering- Center for Environmental Research & Technology

# Developing a Distributed Cooperative Eco-Approach and Departure System at Signalized Intersections Using V2X Communication

## Introduction

Recently, the Eco-Approach and Departure (EAD) application has been widely studied, which utilizes Signal Phase and Timing (SPaT) information to allow connected and automated vehicles (CAVs) to approach to and depart from a signalized intersection in an energy-efficient manner. Most existing work have studied the EAD application from an egoistic perspective (Ego-EAD), without considering the effect on traffic flow throughput. However, relatively limited research aims to benefit not only one vehicle but the whole system.

In this study, we develop a cluster-wise cooperative EAD (Coop-EAD) system to further reduce energy consumption while increasing traffic flow throughput, on top of the existing Ego-EAD system. Instead of considering CAVs traveling through signalized intersections one at a time, we strategically coordinate CAVs' maneuvers to form clusters by the proposed methodologies of initial vehicle clustering, intra-cluster sequence optimization, and cluster formation control. Then the EAD algorithm is applied to the cluster leader, and CAVs in the cluster can conduct EAD maneuvers by following the dynamics of the cluster leader.



# Methodology

- Initial Vehicle Clustering  $\checkmark$  Assign each vehicle in the associate potential cluster
- Intra-Cluster Sequence Optimization
  - $\checkmark$  Adjust the sequence of vehicles inside each potential cluster to maximize the traffic flow throughput
- Cluster Formation Control
  - ✓ Identify the leader of each cluster and apply the lateral and longitudinal control protocol to cluster formation
- Cooperative Eco-Approach and Departure
  - ✓ Apply the EAD protocol to the cluster leader to allow the whole cluster pass the intersection in an energy-efficient manner

# • Initial Vehicle Clustering

- Predefined set of green windows,  $\Gamma = \{G_1, G_2, \dots, G_p, G_{p+1}, \dots\}$ , where  $G_p$  represents the *p*th green window with respect to some reference time point, i.e.,  $G_p \triangleq [g_p^s, g_p^e]$ .
- Estimate the earliest departure time of the *i*th vehicle at time *t*:

$$T_i^e(t) = f(s(t), v(t) | a_i^{max}, v^{limit})$$
(1)

where s(t) is the distance to intersection, v(t) is the instantaneous speed,  $a_i^{max}$  is the maximum acceleration, and  $v^{limit}$  is the roadway speed limit.

- If  $T_i^e(t) \in G_p$  and  $T_i^e(t) \in G_p$ , then vehicle *i* and vehicle *j* are assumed to be in the same initial cluster.
- If N vehicles whose  $T_{(i)}^{e}(t) \in G_{p}$  cannot travel through the intersection within  $G_{p}$ , then intracluster sequence optimization can be applied to identify the first n (n < N) vehicles to travel through by keeping certain time headways

# Ziran Wang (zwang050@ucr.edu), Guoyuan Wu (gywu@cert.ucr.edu), Peng Hao (haop@cert.ucr.edu), and Matthew Barth (barth@ece.ucr.edu)

#### • Intra-Cluster Sequence Optimization

Define

vehicle *i* is the *k*th vehicle on lane *j*  $x_{i,j,k} = \begin{cases} 1 \\ 0 \end{cases}$ otherwise

min  $\sum_i T_i^{\alpha}$ 

then, subjects to

> $\sum_{i} \sum_{k} x_{i,i,k} = 1$ ∀i

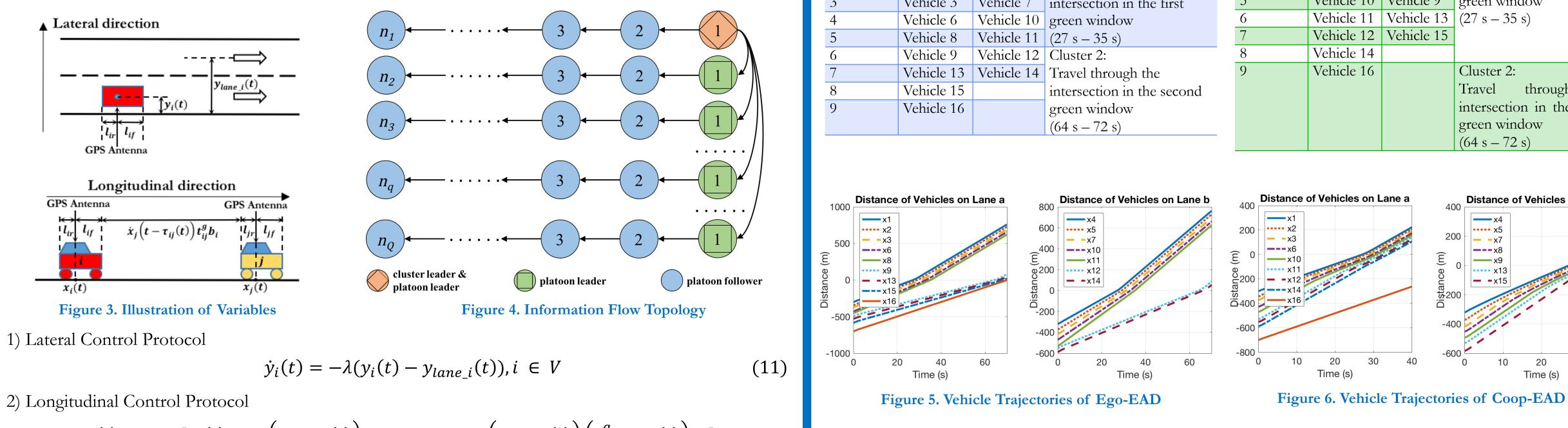
$$\sum_{i} x_{i,j,k} \le 1 \qquad \qquad \forall j,k$$

$$t_{j,k} \ge t_{j,k-1} + t_{min}^h \qquad \forall j,k$$

$$t_{j,k} \ge \sum_{i} T_i^e \cdot x_{i,j,k} \qquad \forall j,k$$

$$T_i^a = \sum_j \sum_k t_{j,k} \cdot x_{i,j,k} \qquad \forall i$$

where  $t_{i,k}$  is the departure time for the kth vehicle on lane j,  $T_i^a$  is the actual departure vehicle i, and  $t_{min}^{h}$  is the minimum headway.


The problem above can be solved in  $O(n \log n)$  time, where  $n = N \times J$  (N is the number of vehicles in the cluster and J is the number of lanes in the approach), by using the *shortest processing time* (SPT) rule. Without loss of generality, if we further define

 $T_1^a \ge g_p^s$ 

then we may identify the last vehicle (e.g., vehicle l) that can travel through the intersection within the pth green phase by solving the aforementioned sequence optimization problem, where

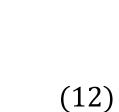
 $T_l^a \le g_p^e$  but  $T_{l+1}^a > g_p^e$ 

#### Cluster Formation Control



2) Longitudinal Control Protocol

$$\dot{x}_{i}(t) = -a_{ij}\left[x_{i}(t) - x_{j}\left(t - \tau_{ij}(t)\right) + l_{if} + l_{jr} + \dot{x}_{j}\left(t - \tau_{ij}(t)\right)\left(t_{ij}^{g} + \tau_{ij}(t)\right)b_{ij}\right]$$
$$-\gamma a_{ij}\left[\dot{x}_{i}(t) - \dot{x}_{j}\left(t - \tau_{ij}(t)\right)\right], i, j \in V$$


|                   | Table 1. List of V                                                       | ariables        |                                    |  |  |
|-------------------|--------------------------------------------------------------------------|-----------------|------------------------------------|--|--|
| $x_i(t)$          | (t) Longitudinal position of vehicle $i$ at time $t$                     | V               | Finite nonempty node set           |  |  |
| $y_i(t)$          | (t) Lateral position of vehicle $i$ at time $t$                          | $t_{ij}^g$      | Inter-vehicle time gap             |  |  |
| $\dot{x}_i(t)$    | b) Longitudinal speed of vehicle $i$ at time $t$                         | l <sub>if</sub> | Length between GPS antenna to from |  |  |
| ÿ <sub>i</sub> (t |                                                                          | ljr             | Length between GPS antenna to rear |  |  |
| $\ddot{x}_i(t)$   | (t) Longitudinal acceleration of vehicle $i$ at time $t$                 | b <sub>i</sub>  | Braking factor of vehicle <i>i</i> |  |  |
| Ylane             | t  Lateral position of vehicle <i>i</i> 's desired lane at time <i>t</i> | λ               | Tuning parameter                   |  |  |
| $	au_{ij}($       | t) Communication delay at time t                                         | γ               | Tuning parameter                   |  |  |



| (2)      |  |
|----------|--|
| (3)      |  |
| (4)      |  |
| (5)      |  |
| (6)      |  |
| (7)      |  |
| (8)      |  |
| time for |  |
|          |  |

(9)

(10)



ont bumper ear bumper

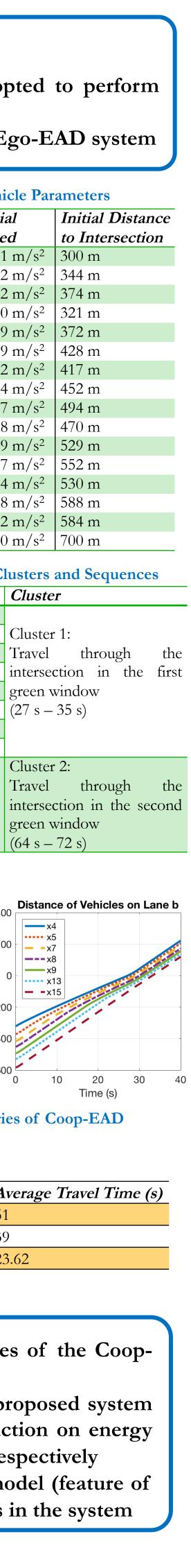
| Simul  | ation | Study <sup>•</sup> |
|--------|-------|--------------------|
| UIIIUI |       | Judy               |

- MATLAB Simulink is used to conduct numerical simulation
- USEPA's MOtor Vehicle Emission Simulator (MOVES) is adopted to perform analysis on the environmental impacts
- The proposed Coop-EAD system is compared with the existing Ego-EAD system

| Parameter                                      | Value                | Vehicle   | Lane/Sequence   | Initia             |
|------------------------------------------------|----------------------|-----------|-----------------|--------------------|
| Number of Cars (N)                             | 16                   | Index     | Index           | Speed              |
| Number of Lanes ( <i>J</i> )                   | 2                    | 1         | a/1             | 13.41 1            |
| Travel Downstream Distance to Intersection     | 100 m                | 23        | a/2<br>a/3      | 14.32 1<br>14.42 1 |
| Simulation Time Step                           | 0.1 s                | 4         | b/1             | 14.10              |
| Communication Delay $(\tau_{ij})$              | 60 ms                | 5         | b/2             | 12.39              |
| Roadway Speed Limit ( $v^{limit}$ )            | 17.88 m/s            | 6         | a/4             | 13.09              |
| Maximum Acceleration $(a_i^{max})$             | 3.5 m/s <sup>2</sup> | 7         | b/3             | 13.12              |
| GPS Antenna to Front Bumper $(l_{if})$         | 3 m                  | 8<br>9    | a/5<br>a/6      | 12.44 1<br>12.77 1 |
| GPS Antenna to Rear Bumper $(l_{ir})$          | 2 m                  | 10        | b/4             | 13.88              |
| Braking Factor $(b_i)$                         | 1                    | 11        | b/5             | 13.29              |
| Desired Time Headway $(t_{ij}^h)$ for Ego-EAD  | 2 s                  | 12        | b/6             | 12.67              |
| Desired Time Headway $(t_{ij}^h)$ for Coop-EAD | 1 s                  | 13<br>14  | a/7<br>b/7      | 12.64              |
| Red Window (not allowed to travel through)     | 27 s                 | 14        | a/8             | 13.08              |
| Green Window (allowed to travel through)       | 8 s                  | 16        | a/9             | 13.30              |
| Yellow Window (not allowed to travel through)  | 2 s                  | /T-1-1- / | . Coop-EAD Vehi |                    |

#### Table 3. Ego-EAD Vehicle Clusters and Sequences

| quence | Lane a     | Lane b     | Cluster                    |
|--------|------------|------------|----------------------------|
|        | Vehicle 1  | Vehicle 4  | Cluster 1:                 |
|        | Vehicle 2  | Vehicle 5  | Travel through the         |
|        | Vehicle 3  | Vehicle 7  | intersection in the first  |
|        | Vehicle 6  | Vehicle 10 | green window               |
|        | Vehicle 8  | Vehicle 11 | (27 s – 35 s)              |
|        | Vehicle 9  | Vehicle 12 | Cluster 2:                 |
|        | Vehicle 13 | Vehicle 14 | Travel through the         |
|        | Vehicle 15 |            | intersection in the second |
|        | Vehicle 16 |            | green window               |
|        |            |            | (64  s - 72  s)            |


|   | Table 4. Coop-EAD Vehicle Clu |            |            |       |  |  |
|---|-------------------------------|------------|------------|-------|--|--|
|   | Sequence                      | Lane a     | Lane b     | Clus  |  |  |
|   | 1                             | Vehicle 1  | Vehicle 4  |       |  |  |
| 4 | 2                             | Vehicle 2  | Vehicle 5  | Clus  |  |  |
|   | 3                             | Vehicle 3  | Vehicle 7  | Trav  |  |  |
| 4 | 4                             | Vehicle 6  | Vehicle 8  | inter |  |  |
| 1 | 5                             | Vehicle 10 | Vehicle 9  | gree  |  |  |
| ( | 6                             | Vehicle 11 | Vehicle 13 | (27 s |  |  |
| - | 7                             | Vehicle 12 | Vehicle 15 |       |  |  |
|   | 8                             | Vehicle 14 |            |       |  |  |
| ( | 9                             | Vehicle 16 |            | Clus  |  |  |
|   |                               |            |            | Trav  |  |  |
|   |                               |            |            | inter |  |  |
|   |                               |            |            | gree  |  |  |
|   |                               |            |            | 16A c |  |  |

#### Table 5. Comparison Results of Ego-EAD and Coop-EAD

|            |         |         |             |             |             |               | -      |
|------------|---------|---------|-------------|-------------|-------------|---------------|--------|
|            | HC(g/s) | CO(g/s) | $NO_X(g/s)$ | $CO_2(g/s)$ | PM2.5 (g/s) | Energy (KJ/s) | Averag |
| Ego-EAD    | 0.041   | 1.161   | 0.144       | 159.852     | 0.011       | 2222.938      | 51     |
| Coop-EAD   | 0.037   | 1.398   | 0.141       | 142.253     | 0.009       | 1978.150      | 39     |
| Reduction% | 10.23   | 13.25   | 2.29        | 11.01       | 19.91       | 11.01         | 23.62  |

### **Conclusions and Future Work**

- A set of methodologies have been developed for different stages of the Coop-EAD system
- A comprehensive simulation has been conducted to show the proposed system can achieve 50% increase on traffic flow throughput, 11% reduction on energy consumption, and up to 20% reduction on pollutant emissions, respectively
- Further research should consider the actual vehicle dynamics model (feature of nonlinearity), and take into account the penetration rate of CAVs in the system

