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Introduction

Los Angeles, California

105/110 freeway interchange, Los Angeles, CA
Source: Google Map
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Introduction

Issues of current transportation systems:
« Safety 37,461 people perished in traffic accidents in the U.S. in 2016

41 hrs/yr/driver are spent by U.S. drivers in traffic during peak
hours in 2017, costing nearly $305 billion in total

11.7 billion gallons of fuel were wasted
worldwide due to traffic congestion in 2015
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Haze in Los Angeles, CA
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Traffic jam in Chongqing, China
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Car crash in Moscow, Russia
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Helping solve the issues by cooperative vehicle-infrastructure systems with
connected and automated vehicles
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SATELLITE
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Autonomous Vehicle

MOBILE

TERRESTRIAL
BROADCAST

Operates in isolation from other
vehicles using internal sensors
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Connected Automated Vehicle

Leverages autonomous and connected
vehicle capabilities

Connected Vehicle

Communicates with nearby

vehicles and infrastructure f" U.S. Department of Transportation
t ITS Joint Program Office
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Research Background

* Generalized connected and automated vehicle (CAV) system

Focus areas of dissertation Control

Perception Localization 8
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Research Background

* Longitudinal cooperative automation of CAVs using V2X communication

Extent of Work using CAVs Potential Benefit to Transportation Systems

Theoretical Work Experimental Work Safety Benefit Mobility Benefit Environment Benefit

A. Cooperative adaptive cruise control and platooning + -+~ '+' '+' + * * * * * *

B. Cooperative merging at highway on-ramps + -+- + * * * * * *

C. Speed harmonization on highways -+~ + '+' * * * i *

D. Cooperative eco-driving at signalized intersections + "{ * * * * * i

E. Automated coordination at non-signalized intersections + ~{ * * *

Number of stars denotes the extent of work conducted, and the extent of the benefits to current transportation systems
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Centralized and Distributed Approaches

Centralized Approaches

Assumptions: availability of global team knowledge, centralized
planning and coordination, fully connected network

Practical Issues: limited communication/sensing range,
environmental factors

Approaches

Features: local neighbor-to-neighbor interaction, evolve in a
parallel manner CENTRALIZED V.S.

Strengths: reduced communication/sensing requirement,
improved scalability, flexibility, reliability, and robustness
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Distributed Consensus for Multi-Agent Systems

Reach agreement or consensus
by cooperation among multiple agents
2:88 /IK 3:00
Ziran < > Wu < > TSR
n
x;lk + 1] 2 Klxlkl,  ij=1..n
j=1
| | where j is the neighbor agent of i
)
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Distributed Consensus Algorithms for Car Following

V2V communications & s = 1
S
{ j

Dynamics of a connected vehicle
1i(t) = vi(t)
vi(t) = a;(t)

First-order consensus algorithm r;(t), v; (1), a;(t) r;(t),v;(1), a;(t)

v;i(t) = z a;jk;; rl(t) rj(t)), i=2,.,nj=i—1

Second-order consensus algorithm
n-1

Cli(t) = — Z aijkij (Ti(t) — T'](t)) +y (Ui(t) — U](t))] ) [ = 2, ...,Tl,j =i—1
j=1
where q;; is the adjacency matrix of the associated communication graph, k;; and y are control gains
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COOPERATIVE ADAPTIVE CRUISE CONTROL

15
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Cooperative Adaptive Cruise Control

than human driving by taking a lot of danger out of the equation
 Roadway capacity is increased due to the reduction of inter-vehicle time gap

consumption and pollutant emissions are reduced due to the mitigation of
unnecessary stop and go, and aerodynamic drag of following vehicles

(source: Daimler)
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Cooperative Adaptive Cruise Control

Distributed consensus-based CACC algorithms for heterogeneous CAVs with predecessor-following
[ 7(8) = vy(8)
Tji(t) = —aijkij[ri(t) — 7”] (t — Tij(t)) + llf + l]T‘ + Uj (t — Tij(t)) (tg + Tij(t)

\ @ijkij [Ui(t) — v (t — Tij(t))]

A

i=2,.,nj=i—-1

r;(t) Longitudinal position of vehicle i at time t tfj Inter-vehicle time gap
v; (t) Longitudinal speed of vehicle i at time ¢ lir | Length between GPS antenna to front
bumper
v;(t) Longitudinal acceleration of vehicle i at time t lir | Length between GPS antenna to rear
bumper
a;; (i, )th entry of the adjacency matrix b; | Braking factor of @
7;; (1) Communication delay at time t , k;j| Tuning parameter

(Reference: Wang et al, Developing a distributed consensus-based CACC for heterogenous vehicles with predecessor-following topology, Journal of Advanced Transportation, 2017) 17
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Cooperative Adaptive Cruise Control

[ 70 = v(©)
ﬁi(t) = —al-jkij T'i(t) — 7”] (t - Tij(t)) + llf + l]T + Uj (t — Tij(t)) (t'lg] + Tij(t)) bl]

— yal-jkij [Ui (t) — Vj (t — Tyj (t))] pOSitiOn consensus

.\

. i=2,..,nj=i—1
velocity consensus

Predecessor following topology Direction

>
GPS Antenna
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Scenario 1: Normal platoon formation
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Cooperative Adaptive Cruise Control

Scenario 2: Platoon restoration from disturbances
“+A step change is applied to the velocity of the leading vehicle
“+All following vehicles are capable to take immediate responses
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Cooperative Adaptive Cruise Control

* Merging protocol

Direction

Platoon
|

21
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Cooperative Adaptive Cruise Control

* Scenario 3: Merging and splitting maneuvers

Velocity of Vehicles in Platoon
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Cooperative Adaptive Cruise Control

* Feedforward control: Lookup table for control gain

Initial states (Ari i (o), vi(to), v; (to — Tjj (to))> varies every time the algorithm is switched on by vehicles

Initial states of vehicles highly affect the convergence of the consensus algorithm

Build up a lookup table to find the optimal value of control gains with respect to different initial conditions

vLeader0 = 10m/s, vFollowerlni = 30m/s, gaplni = 200m vLeaderlni = 10m/s, vFollowerlni = 30m/s, gaplni = 200m
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Cooperative Adaptive Cruise Control

Safety Constraint (15t priority)
Evaluated by headway overshoot

Tj (t — Tjj (t)) — ri(t) > lj: t € [to, teonsensus]

Efficiency Constraint (2" priority)
Evaluated by convergence time

g
= Ny - llj + vi(tconsensus) ’ (tij (tconsensus) + Tij (tconsensus))]

|vj (tconsensus — T j (tconsensus)) _ vi(tconsensus) =< Ny - vj (tconsensus — T j (tconsensus))

la; (teonsensus)| < 6a
I]erki(tconsensus)l < 5jerk

|7‘] (tconsensus — Tij (tconsensus)) _ ri(tconsensus)

Comfort Constraint (3™ priority)
Evaluated by maximum acceleration/deceleration and maximum jerk
Q= wy - max ](Ia{nax(t)l, |d;"*(O)]) + w, - max ](Ijerklmax(t)l, ljerk™™()|), t € [to, teonsensus]

te [tO'tCOTLSQTLS‘uS te[toitconsensus

24
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TABLE 1. Settings of Simulation Scenarios

T

Cooperative Adaptive Cruise Control

TABLE II. SIMULATION RESULTS

Ary;(to) (m) vi(te) (mfs) | v (to — 1y (to)) (m/s) Convergence time (s) Maximum jerk (m/s?)
Scenario 1 50 28 14 Scenario | 1 Z . 2 1 z . 4
Scenario 2 20 16 29 Wang 359 | 350 | 565 [ 576 | 21.2 | 20.7 | 25.7 134
Scenario 3 230 18 10 van Arem | 293 | 32.1 | 41.8 | 40.1 1.5 1.6 2.3 0.7
Scenario 4 -80 4 71 Proposed | 24.9 | 229 | 32.1 | 283 2.3 0.8 1.6 1.6
Scenario 1 Scenario 2 Scenario 3 Scenario 4
20 — - 24 - 30 . . .
\ e \/ —y. ] L. T ITTEE A e et
i i o
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COOPERATIVE ECO-DRIVING AT
SIGNALIZED INTERSECTIONS
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Eco-Approach and Departure

» Utilizes traffic signal phase and timing (SPaT) data to provide driver
recommendations that encourage “green” approaches to signalized intersections

Roadside
S _Equipment Unit

Traffic Signal
Controller with
SPar Interface

SPaT and Gn.; .

(f' Messages ~
V2v

9 x ~ Communications:

N\  Basic Safety

- Il

Vehicle Equipped with the
Eco-Approach and
Departure at Signalized
Intersections Application
(CACC capabilities
optional)

Traffic Signal
Head

Source: Noblis, November 2013

Volvo truck demo @ Carson, CA, Mar. 6, 2019
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Cooperative Eco-Driving

* Taking advantages of both eco-approach and departure, as well as CACC
Eco-approach g !
and departure j . Roadsnde
‘ 12V unlt (RSU)

&communlcatlon

V2V
communication

- Cooperative
adaptive cruise
control (CACC)

28
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Cooperative Eco-Driving

* System Architecture

Higher Level Cooperative Eco-Driving System

State Machines Longitudinal Control Models

Scenario Eco-Approach

Lower Level Role Transition " and Departure [ CACC Algorithm
Transition !

Algorithm

29
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|

v

g il

Cooperative Eco-Driving

No

Conventional CED
vehicle vehicle
_A V21
range?
1 Yes
Algorithm 1
v
- Algorithm 3
Driven by
human
drivers

Algorithm 1

Yes
Algorithm 2 || Distributed IDM- Distributed
1 consensus based consensus
EAD model model model
model

 Two vehicle types:
Conventional vehicle and CED vehicles
* Two vehicle roles:
Leader and follower
* Four longitudinal controllers:
Human driver model, EAD model, IDM model, and

distributed consensus model

(Reference: Wang et al, Cooperative eco-driving at signalized intersections in a partially connected and automated
vehicle environment, I[EEE Transactions on Intelligent Transportation Systems, 2019)
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Cooperative Eco-Driving

* Role and control models of CED vehicles

31
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Cooperative Eco-Driving
 How cooperative eco-driving system works?

1. Calculate , earliest and latest time-to-arrival value
dy
te = —
U1
- d, current distance to the intersection
dy — vy 20 N s 2 amax |2 Jerkmax vy current speed of vehicle
t, = , = min , . .
€ Viim 2a Viim — V1 Viim — V1 Ao maximum changing rate of speed
- jerk,., ~ Maximum changing rate of acceleration or deceleration
di — vy 28 T | 2 Aoy 2 - jerkoay B the speed limit of the current roadway
t, = +55,p = min ) v coasting speed
Vcoast 2,8 V1 = Vcoast V1 = Vcoast coast

2. Run the scenario transition state machine to decide the scenario
3. Assign the time-to-arrival value t,,.- to one of ¢, t,, t; based on the selected scenario

4. Propose EAD algorithm for the CED leader with respect to different scenarios

32
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Cooperative Eco-Driving

- | |
EAD scenarios | Analysis Boundary |
I il
. | .
Speed 3 DSRC Range | :
L i |
__ Vehicle2 Scenario of vehicles:
- - - —
Venicle 1 « Vehicle 1 - Cruise

Vehicle 4 e Vehicle 2 - Accelerate

| | |
! ! |
! ! . |
| | Vehicle 3 : « Vehicle 3 - Stop
! ! | * Vehicle 4 -
: : : >
i i ) | Distance
: : Intersection |
' _' of Interest |
I I I
| i i

| i | I i

el | -} -

' Phase1 ! Phase2 ! Phase 3 ' Phase5

Accelerating '  Cruising ' Decelerating . Accelerating
Phase 4

Idling 33
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Cooperative Eco-Driving

* Algorithms for eco-approach and eco-departure, different scenarios

Aref = Vg1 * J1 - Sin(jit), t € [O L)

Approach . - -
Aref = Va1 *J1* 51 [kl . (t + ky tl)] te [2]1 2j1 T 2k1)
. . T
Aref = Vg2 * ]2 = SIN [kz ) (t + k_z - tdepart)] t € [tdepart» tdepart + ;)
Departure - -
Clref = Vg4, * Jo * Sin []2 . (t — tdepart — 2—]2 — E)] t € [tdepart + — tde'part -|- -|- E)
1. Accelerate or scenario 2. Stop scenario
V1 . Vn
dq _ _dz vp=—k;=ji=—-mandt =t
Vh = 77 Vd1 = Vh — V1, Vg2 = Vp — Vtars and tdepart = —= h 2 ™M Ji d; ’ depart next_s
t v
max k; subject to
=12
. | < 2 .
U o 0 R O
|ki™ - vaql S]erkmax’ji = ,(i=1,2)

k= (5-1)-2 2[(5-1)-5i-

2 34
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Cooperative Eco-Driving

* Microscopic traffic simulation in pure CAV environment

35
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Cooperative Eco-Driving

Microscopic traffic simulation study is conducted based on the University Avenue corridor in Riverside, CA,

with realistic traffic data provided by City of Riverside
B

((((((((

ppppppppp

I > Cranford Ave: 367 m P

\ University Avenue University Avenue
" Y
University Ave: 1084 m  :
. %
Everton
......... /
e B e N 1.

Vehicle Role Transition Protocol
Vehide Longitudinal Control Models

Signal Timing Data
:

U.S. EPA MOVES Model
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Cooperative Eco-Driving

37
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Cooperative Eco-Driving

* Microscopic traffic simulation running in PTV VISSIM (3D mode)
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Cooperative Eco-Driving

 Simulation results

I Scenario | Vehicle Composition Energy NOx HC CcO CO,

I(l) 0% CED & 100% Conventional 39242 kl/km 0.051 g/km 0.015 g/km 1.394 g/km 2849 g/km
(2) 0% CED & 100% EAD-Only 3737.5 kl/km 0.044 g/km 0.013 g/km 1.254 g/km 271.3 g/km

I Reductions ratio with respectto | Sce.(1) | Sce.(2) | Sce.(l) | Sce.(2) | Sce(l) | Sce.(2) | Sce.(l) | Sce.(2) | Sce(l) | Sce.(2)
| (3) 10% CED & 90% Conventional -0.3% -5.4% 7.3% 0.0% 7.8% -1.2% 7.9% 6.1% -0.3% -5.4%
(4) 20% CED & 80% Conventional -3.1% -8.2% 14.6% 7.9% 15.4% 7.1% 16.0% 6.1% -3.1% -8.2%
(5) 30% CED & 70% Conventional -4.0% -9.2% | 20.7% 14.5% | 21.8% 14.2% | 22.5% -2.3% -4.0% -9.2%
(6) 40% CED & 60% Conventional | -12.0% | -17.6% | 25.6% 19.7% | 26.2% 19.0% | 27.8% 6.7% | -12.0% | -17.6%
(7) 50% CED & 50% Conventional -6.5% | -11.8% 33.3% 28.1% 34.4% 28.0% | 35.5% 13.9% -6.5% | -11.8%
(8) 60% CED & 40% Conventional -3.1% -8.2% 37.9% 33.0% 39.6% 33.8% | 40.9% 19.8% -3.1% -8.2%
(9) 70% CED & 30% Conventional -0.9% -5.9% | 42.5% 38.0% | 44.3% 38.9% | 45.2% 28.3% -0.9% -5.9%
(10) 80% CED & 20% Conventional 3.9% -0.9% | 46.9% 428% | 492% | 443% | 49.8% 34.3% 3.9% -0.9%
(11) 90% CED & 10% Conventional 6.5% 1.8% | 49.9% 46.0% 51.0% | 46.2% | 54.5% 39.1% 6.5% 1.8%
(12) 100% CED 7.1% 2.5% 54.6% 51.1% 56.7% 52.5% | 59.0% | 44.3% 7.1% 2.5%
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COOPERATIVE MERGING AT HIGHWAY ON-RAMPS
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Cooperative Merging at Highway On-Ramps

 Drawbacks of traditional on-ramp merging systems
- Obstructed vision of drivers
- Late merging decision
- Extreme speed changes

(CA-60 WB, Main St. On-Ramp, Riverside, CA)

(source: Google Map)

41
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Cooperative Merging at Highway On-Ramps

* Cooperative merging at highway on-ramps
- Take advantage of V2V and I2V communication
- Adopt “ghost vehicle” concept
- Complete longitudinal formation before merging

VaI
Communication
Starting Point

vrs_avg: Vys J

Merging Point

——  Actual control
------- Safe warranty control
RSU-Equipped Infrastructure

42

(Reference: Wang et al, Cooperative ramp merging system: Agent-based modeling and simulation using game engine, SAE International Journal of Connected and Automated Vehicles, 2019)
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Cooperative Merging at Highway On-Ramps

* System Architecture

Vehicle
Vehicle Sequencing Protocol Longitudinal
Control

Distributed
consensus
algorithm

Max reachable Estimated Vehicle sequence
speed arrival time identification

43
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Cooperative Merging at Highway On-Ramps

* System Workflow

Process data. -
Assign ‘

- Follow-the.

reference
vehicle

44
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| |— S
==Gap has been created

B

Video captured during simulation
Key steps during the simulation 45
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Cooperative Merging at Highway On-Ramps

 Compare with human-in-the-loop simulation

* 4 different drivers contribute 20 simulation runs on the driving simulator

> ?
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Vehicle Speed Profiles
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Cooperative Merging at Highway On-Ramps

* Savings in terms of travel time, energy consumption, and pollutant emissions
e (Calculated for all 7 vehicles in the network

Travel time (s) Energy (KJ)

Cooperative merging 218.14 9154.0 0.0094 11737 651.29 0.0440
Human-in-the-loop 233.58 9930.6 0.0200 2.8192 706.54 0.0759
Reduction percentage 6.6% 7.8% 53.0% 58.4% 71.8% 42.0%
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Cooperative Merging at Highway On-Ramps

* Conducting field implementation using real vehicles
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CONCLUSIONS AND FUTURE WORK

58



College of Engineering- Center for ‘
Environmental Research & Technology
Main Contributions of the Dissertation

* Developed a high-level for agent-based distributed cooperative
vehicle-infrastructure systems (CVIS)

* Proposed cooperative automation applications in the CAV environment
under V2V and/or 12V communication, with each of them bringing one or
more benefits to the transportation system

* Developed motion control algorithms to realize the desired movements of
CAVs in the proposed CAV applications, where algorithms were analyzed
qualitatively and quantitatively by various simulation approaches
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Future Work Based on the Dissertation

* Build a more reliable architecture for CVIS
e Conduct fault detection/isolation regarding communication impairments or cyberattacks
 Temporarily/smoothly switch to degraded modes of control, depending less on communication
* Maintain string stability under special occasions

* Identify and close the between research and implementation
 Theoretical research results need to be under various realistic conditions to identify this gap
* Could be both and

* Develop more ready-to-market CVIS with mixed traffic environment

« CVIS that work for a pure CAV environment do not necessarily work for a mixed traffic environment,
given the uncertainties introduced by other vehicle types in the environment

* Future development of CVIS may take advantages of advanced sensing & communication technology
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