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105/110 freeway interchange, Los Angeles, CA

Source: Google Map
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Issues of current transportation systems:

• Safety 37,461 people perished in traffic accidents in the U.S. in 2016 

• Mobility 41 hrs/yr/driver are spent by U.S. drivers in traffic during peak 
hours in 2017, costing nearly $305 billion in total 

• Environmental sustainability 11.7 billion gallons of fuel were wasted 
worldwide due to traffic congestion in 2015 

Car crash in Moscow, Russia

Haze in Los Angeles, CA

Traffic jam in Chongqing, China



Introduction
Helping solve the issues by cooperative vehicle-infrastructure systems with 
connected and automated vehicles

Cooperative 
vehicle-infrastructure 

systems (CVIS)

Connected 
and automated 
vehicles (CAV)

(source: ETSI)
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• Generalized connected and automated vehicle (CAV) system
Focus areas of dissertation 
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• Longitudinal cooperative automation of CAVs using V2X communication

Number of stars denotes the extent of work conducted, and the extent of the benefits to current transportation systems 



DISTRIBUTED CONSENSUS FOR MULTI-AGENT 
SYSTEMS
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Centralized Approaches
- Assumptions: availability of global team knowledge, centralized 

planning and coordination, fully connected network

- Practical Issues: limited communication/sensing range, 
environmental factors

Distributed Approaches
- Features: local neighbor-to-neighbor interaction, evolve in a 

parallel manner

- Strengths: reduced communication/sensing requirement, 
improved scalability, flexibility, reliability, and robustness

Centralized and Distributed Approaches

CENTRALIZED V.S. DISTRIBUTED
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Reach global/centralized agreement or consensus

by distributed/decentralized cooperation among multiple agents

Schedule the final defense for Ziran 𝑥𝑖 𝑘 + 1 = ෍

𝑗=1

𝑛

𝑎𝑖𝑗 𝑘 𝑥𝑗 𝑘 , 𝑖, 𝑗 = 1,… , 𝑛

where 𝑗 is the neighbor agent of 𝑖



Distributed Consensus Algorithms for Car Following
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Dynamics of a connected vehicle
ሶ𝑟𝑖(𝑡) = 𝑣𝑖(𝑡)
ሶ𝑣𝑖(𝑡) = 𝑎𝑖(𝑡)

• First-order consensus algorithm

𝑣𝑖 𝑡 = − ෍

𝑗=1

𝑛−1

𝑎𝑖𝑗𝑘𝑖𝑗 𝑟𝑖 𝑡 − 𝑟𝑗 𝑡 , 𝑖 = 2,… , 𝑛, 𝑗 = 𝑖 − 1

• Second-order consensus algorithm

𝑎𝑖 𝑡 = − ෍

𝑗=1

𝑛−1

𝑎𝑖𝑗𝑘𝑖𝑗 𝑟𝑖 𝑡 − 𝑟𝑗 𝑡 + 𝛾 𝑣𝑖 𝑡 − 𝑣𝑗 𝑡 , 𝑖 = 2,… , 𝑛, 𝑗 = 𝑖 − 1

where 𝑎𝑖𝑗 is the adjacency matrix of the associated communication graph, 𝑘𝑖𝑗 and 𝛾 are control gains

𝒓𝒊 𝒕 , 𝒗𝒊 𝒕 , 𝒂𝒊(𝒕) 𝒓𝒋 𝒕 , 𝒗𝒋 𝒕 , 𝒂𝒋(𝒕)

V2V communications

𝒊 𝒋



COOPERATIVE ADAPTIVE CRUISE CONTROL
→ MOBILITY BENEFIT
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Cooperative Adaptive Cruise Control
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• Safer than human driving by taking a lot of danger out of the equation

• Roadway capacity is increased due to the reduction of inter-vehicle time gap

• Fuel consumption and pollutant emissions are reduced due to the mitigation of 
unnecessary stop and go, and aerodynamic drag of following vehicles  

(source: Daimler) (source: Volvo)



Cooperative Adaptive Cruise Control
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𝑟𝑖 𝑡 Longitudinal position of vehicle i at time t 𝑡𝑖𝑗
𝑔 Inter-vehicle time gap

𝑣𝑖 𝑡 Longitudinal speed of vehicle 𝒊 at time 𝒕 𝑙𝑖𝑓 Length between GPS antenna to front 
bumper

ሶ𝑣𝑖 𝑡 Longitudinal acceleration of vehicle 𝒊 at time 𝒕 𝑙𝑗𝑟 Length between GPS antenna to rear 
bumper

𝑎𝑖𝑗 𝑖, 𝑗 th entry of the adjacency matrix 𝑏𝑖 Braking factor of vehicle 𝒊

𝜏𝑖𝑗 𝑡 Communication delay at time 𝒕 𝛾, 𝑘𝑖𝑗 Tuning parameter

𝑖 = 2,… , 𝑛, 𝑗 = 𝑖 − 1

ሶ𝑟𝑖 𝑡 = 𝑣𝑖 𝑡

ሶ𝑣𝑖 𝑡 = −𝑎𝑖𝑗𝑘𝑖𝑗[𝑟𝑖 𝑡 − 𝑟𝑗 𝑡 − 𝜏𝑖𝑗 𝑡 + 𝑙𝑖𝑓 + 𝑙𝑗𝑟 + 𝑣𝑗 𝑡 − 𝜏𝑖𝑗 𝑡 𝑡𝑖𝑗
𝑔
+ 𝜏𝑖𝑗 𝑡 𝑏𝑖]

− 𝛾𝑎𝑖𝑗𝑘𝑖𝑗 𝑣𝑖 𝑡 − 𝑣𝑗 𝑡 − 𝜏𝑖𝑗 𝑡

Distributed consensus-based CACC algorithms for heterogeneous CAVs with predecessor-following

(Reference: Wang et al, Developing a distributed consensus-based CACC for heterogenous vehicles with predecessor-following topology, Journal of Advanced Transportation, 2017)



velocity consensus

position consensus

Cooperative Adaptive Cruise Control
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Predecessor following topology

𝑖 = 2,… , 𝑛, 𝑗 = 𝑖 − 1

ሶ𝑟𝑖 𝑡 = 𝑣𝑖 𝑡

ሶ𝑣𝑖 𝑡 = −𝑎𝑖𝑗𝑘𝑖𝑗[𝑟𝑖 𝑡 − 𝑟𝑗 𝑡 − 𝜏𝑖𝑗 𝑡 + 𝑙𝑖𝑓 + 𝑙𝑗𝑟 + 𝑣𝑗 𝑡 − 𝜏𝑖𝑗 𝑡 𝑡𝑖𝑗
𝑔
+ 𝜏𝑖𝑗 𝑡 𝑏𝑖]

− 𝛾𝑎𝑖𝑗𝑘𝑖𝑗 𝑣𝑖 𝑡 − 𝑣𝑗 𝑡 − 𝜏𝑖𝑗 𝑡



Cooperative Adaptive Cruise Control

19

• Scenario 1: Normal platoon formation



Cooperative Adaptive Cruise Control
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• Scenario 2: Platoon restoration from disturbances
A step change is applied to the velocity of the leading vehicle

All following vehicles are capable to take immediate responses



Cooperative Adaptive Cruise Control
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• Merging protocol



Cooperative Adaptive Cruise Control
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• Scenario 3: Merging and splitting maneuvers



Cooperative Adaptive Cruise Control
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Initial states ∆𝑟𝑖𝑗 𝑡0 , 𝑣𝑖 𝑡0 , 𝑣𝑗 𝑡0 − 𝜏𝑖𝑗 𝑡0 varies every time the algorithm is switched on by vehicles

Initial states of vehicles highly affect the convergence of the consensus algorithm

Build up a lookup table to find the optimal value of control gains with respect to different initial conditions

• Feedforward control: Lookup table for control gain  



Cooperative Adaptive Cruise Control
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Safety Constraint (1st priority)
Evaluated by headway overshoot

𝑟𝑗 𝑡 − 𝜏𝑖𝑗 𝑡 − 𝑟𝑖 𝑡 > 𝑙𝑗 , 𝑡 ∈ [𝑡0, 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠]

Efficiency Constraint (2nd priority)
Evaluated by convergence time

𝑟𝑗 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 − 𝜏𝑖𝑗 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 − 𝑟𝑖 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 ≤ 𝜂𝑟 ∙ 𝑙𝑗 + 𝑣𝑖 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 ∙ 𝑡𝑖𝑗
𝑔
𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 + 𝜏𝑖𝑗 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

𝑣𝑗 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 − 𝜏𝑖𝑗 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 − 𝑣𝑖 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 ≤ 𝜂𝑣 ∙ 𝑣𝑗 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 − 𝜏𝑖𝑗 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

𝑎𝑖 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 ≤ 𝛿𝑎
𝑗𝑒𝑟𝑘𝑖 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 ≤ 𝛿𝑗𝑒𝑟𝑘

Comfort Constraint (3rd priority)
Evaluated by maximum acceleration/deceleration and maximum jerk
Ω𝑖 = 𝜔1 ∙ max

𝑡∈ 𝑡0,𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠
𝑎𝑖
max 𝑡 , 𝑑𝑖

max 𝑡 + 𝜔2 ∙ max
𝑡∈ 𝑡0,𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

𝑗𝑒𝑟𝑘𝑖
max 𝑡 , 𝑗𝑒𝑟𝑘𝑖

min 𝑡 , 𝑡 ∈ [𝑡0, 𝑡𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠]



Cooperative Adaptive Cruise Control
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COOPERATIVE ECO-DRIVING AT 
SIGNALIZED INTERSECTIONS

→ ENVIRONMENTAL SUSTAINABILITY 
BENEFIT
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Eco-Approach and Departure

• Utilizes traffic signal phase and timing (SPaT) data to provide driver 
recommendations that encourage “green” approaches to signalized intersections

Volvo truck demo @ Carson, CA, Mar. 6, 2019



Cooperative Eco-Driving
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• Taking advantages of both eco-approach and departure, as well as CACC



Cooperative Eco-Driving
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• System Architecture

Cooperative Eco-Driving System

State Machines Longitudinal Control Models

Role Transition
Scenario 

Transition

Eco-Approach 
and Departure 

Algorithm
CACC Algorithm

Higher Level

Lower Level



Cooperative Eco-Driving

• Two vehicle types: 

Conventional vehicle and CED vehicles

• Two vehicle roles:

Leader and follower

• Four longitudinal controllers:

Human driver model, EAD model, IDM model, and 

distributed consensus model

(Reference: Wang et al, Cooperative eco-driving at signalized intersections in a partially connected and automated 
vehicle environment, IEEE Transactions on Intelligent Transportation Systems, 2019)



Cooperative Eco-Driving
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• Role and control models of CED vehicles



Cooperative Eco-Driving
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1. Calculate cruising, earliest and latest time-to-arrival value

𝑡𝑐 =
𝑑1
𝑣1

𝑡𝑒 =
𝑑1 − 𝑣1 ∙

𝜋
2𝛼

𝑣𝑙𝑖𝑚
+

𝜋

2𝛼
, 𝛼 = min

2 ∙ 𝑎𝑚𝑎𝑥

𝑣𝑙𝑖𝑚 − 𝑣1
,

2 ∙ 𝑗𝑒𝑟𝑘𝑚𝑎𝑥

𝑣𝑙𝑖𝑚 − 𝑣1

𝑡𝑙 =
𝑑1 − 𝑣1 ∙

𝜋
2𝛽

𝑣𝑐𝑜𝑎𝑠𝑡
+

𝜋

2𝛽
, 𝛽 = min

2 ∙ 𝑎𝑚𝑎𝑥

𝑣1 − 𝑣𝑐𝑜𝑎𝑠𝑡
,

2 ∙ 𝑗𝑒𝑟𝑘𝑚𝑎𝑥

𝑣1 − 𝑣𝑐𝑜𝑎𝑠𝑡

2. Run the scenario transition state machine to decide the scenario

3. Assign the time-to-arrival value 𝑡𝑎𝑟𝑟 to one of 𝑡𝑐 , 𝑡𝑒 , 𝑡𝑙 based on the selected scenario

4. Propose EAD algorithm for the CED leader with respect to different scenarios

Parameter Definition

𝑑1 current distance to the intersection

𝑣1 current speed of vehicle

𝑎𝑚𝑎𝑥 maximum changing rate of speed

𝑗𝑒𝑟𝑘𝑚𝑎𝑥 maximum changing rate of acceleration or deceleration

𝑣𝑙𝑖𝑚 the speed limit of the current roadway

𝑣𝑐𝑜𝑎𝑠𝑡 coasting speed

• How cooperative eco-driving system works?



Cooperative Eco-Driving
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Scenario of vehicles:

• Vehicle 1 – Cruise

• Vehicle 2 – Accelerate

• Vehicle 3 – Stop

• Vehicle 4 – Decelerate

• EAD scenarios



Cooperative Eco-Driving
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Approach൞
𝑎𝑟𝑒𝑓 = 𝑣𝑑1 ∙ 𝑗1 ∙ sin 𝑗1𝑡 , 𝑡 ∈ ቂ0, ቁ

𝜋

2𝑗1

𝑎𝑟𝑒𝑓 = 𝑣𝑑1 ∙ 𝑗1 ∙ sin 𝑘1 ∙ 𝑡 +
𝜋

𝑘1
− 𝑡1 , 𝑡 ∈ ቂ

𝜋

2𝑗1
, ቁ
𝜋

2𝑗1
+

𝜋

2𝑘1

D𝐞𝐩𝐚𝐫𝐭𝐮𝐫𝐞 ൞
𝑎𝑟𝑒𝑓 = 𝑣𝑑2 ∙ 𝑗2 ∙ sin 𝑘2 ∙ 𝑡 +

𝜋

𝑘2
− 𝑡𝑑𝑒𝑝𝑎𝑟𝑡 , 𝑡 ∈ ቂ𝑡𝑑𝑒𝑝𝑎𝑟𝑡 , ቁ𝑡𝑑𝑒𝑝𝑎𝑟𝑡 +

𝜋

2𝑘2

𝑎𝑟𝑒𝑓 = 𝑣𝑑2 ∙ 𝑗2 ∙ sin 𝑗2 ∙ 𝑡 − 𝑡𝑑𝑒𝑝𝑎𝑟𝑡 −
𝜋

2𝑗2
−

𝜋

2𝑘2
, 𝑡 ∈ ቂ𝑡𝑑𝑒𝑝𝑎𝑟𝑡 +

𝜋

2𝑘2
, 𝑡𝑑𝑒𝑝𝑎𝑟𝑡 + ቁ

𝜋

2𝑗2
+

𝜋

2𝑘2

2. Stop scenario

𝑣ℎ =
𝑣1

2
, 𝑘𝑖 = 𝑗𝑖 =

𝑣ℎ

𝑑𝑖
∙ 𝜋, and 𝑡𝑑𝑒𝑝𝑎𝑟𝑡 = 𝑡𝑛𝑒𝑥𝑡_𝑠

1. Accelerate or decelerate scenario

𝑣ℎ =
𝑑1

𝑡𝑎𝑟𝑟
, 𝑣𝑑1 = 𝑣ℎ − 𝑣1, 𝑣𝑑2 = 𝑣ℎ − 𝑣𝑡𝑎𝑟 , and 𝑡𝑑𝑒𝑝𝑎𝑟𝑡 =

𝑑2

𝑣ℎ

max
𝑖=1,2

𝑘𝑖 subject to

|𝑘𝑖 ∙ 𝑣𝑑𝑖| ≤ 𝑎𝑚𝑎𝑥

|𝑘𝑖
2 ∙ 𝑣𝑑𝑖| ≤ 𝑗𝑒𝑟𝑘𝑚𝑎𝑥

𝑘𝑖 ≥
𝜋

2
− 1 ∙

𝑣ℎ

𝑑𝑖

, 𝑗𝑖 =

−
𝜋

2
𝑘𝑖−

𝜋

2
𝑘𝑖

2
−4𝑘𝑖

2∙
𝜋

2
−1 −

𝑑𝑖
𝑣ℎ
∙𝑘𝑖

2
𝜋

2
−1 −

𝑑𝑖
𝑣ℎ
∙𝑘𝑖

, 𝑖 = 1, 2

• Algorithms for eco-approach and eco-departure, different scenarios



Cooperative Eco-Driving
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• Microscopic traffic simulation in pure CAV environment 



Cooperative Eco-Driving
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Microscopic traffic simulation study is conducted based on the University Avenue corridor in Riverside, CA, 

with realistic traffic data provided by City of Riverside



Cooperative Eco-Driving
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• Microscopic traffic simulation in mixed traffic environment



Cooperative Eco-Driving
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• Microscopic traffic simulation running in PTV VISSIM (3D mode)



Cooperative Eco-Driving
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• Simulation results



COOPERATIVE MERGING AT HIGHWAY ON-RAMPS
→ SAFETY BENEFIT

40



Cooperative Merging at Highway On-Ramps
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• Drawbacks of traditional on-ramp merging systems

– Obstructed vision of drivers

– Late merging decision

– Extreme speed changes

(CA-60 WB, Main St. On-Ramp, Riverside, CA)

(source: Google Map)



Cooperative Merging at Highway On-Ramps
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• Cooperative merging at highway on-ramps

– Take advantage of V2V and I2V communication

– Adopt “ghost vehicle” concept

– Complete longitudinal formation before merging 

(Reference: Wang et al, Cooperative ramp merging system: Agent-based modeling and simulation using game engine, SAE International Journal of Connected and Automated Vehicles, 2019)



43

• System Architecture

Vehicle Sequencing Protocol
Vehicle 

Longitudinal 
Control

Max reachable 
speed

Estimated 
arrival time

Vehicle sequence 
identification

Distributed 
consensus 
algorithm

Cooperative Merging at Highway On-Ramps



Cooperative Merging at Highway On-Ramps
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• System Workflow

INF

Process data. 

Assign 

sequence.

Follow the 

reference 

vehicle



Cooperative Merging at Highway On-Ramps
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• Simulation in game engine Unity

Video captured during simulation
Key steps during the simulation



Cooperative Merging at Highway On-Ramps
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• Compare with human-in-the-loop simulation

• 4 different drivers contribute 20 simulation runs on the driving simulator
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Cooperative Merging at Highway On-Ramps
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• Savings in terms of travel time, energy consumption, and pollutant emissions

• Calculated for all 7 vehicles in the network



Cooperative Merging at Highway On-Ramps
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• Conducting field implementation using real vehicles



CONCLUSIONS AND FUTURE WORK
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Main Contributions of the Dissertation

59

• Developed a high-level architecture for agent-based distributed cooperative 
vehicle-infrastructure systems (CVIS)

• Proposed cooperative automation applications in the CAV environment 
under V2V and/or I2V communication, with each of them bringing one or 
more benefits to the transportation system

• Developed motion control algorithms to realize the desired movements of 
CAVs in the proposed CAV applications, where algorithms were analyzed 
qualitatively and quantitatively by various simulation approaches 



Future Work Based on the Dissertation

60

• Build a more reliable architecture for CVIS
• Conduct fault detection/isolation regarding communication impairments or cyberattacks

• Temporarily/smoothly switch to degraded modes of control, depending less on communication

• Maintain string stability under special occasions

• Identify and close the gap between research and implementation 
• Theoretical research results need to be tested under various realistic conditions to identify this gap 

• Could be both labor-intensive and time-consuming

• Develop more ready-to-market CVIS with mixed traffic environment
• CVIS that work for a pure CAV environment do not necessarily work for a mixed traffic environment, 

given the uncertainties introduced by other vehicle types in the environment

• Future development of CVIS may take advantages of advanced sensing & communication technology 
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