

Developing a Platoon-Wide Eco-Cooperative Adaptive Cruise Control (CACC) System

2017 Los Angeles Environmental Forum August 28th

Ziran Wang (王子然), Guoyuan Wu, Peng Hao, Kanok Boriboonsomsin, and Matthew J. Barth

Center for Environmental Research and Technology University of California, Riverside

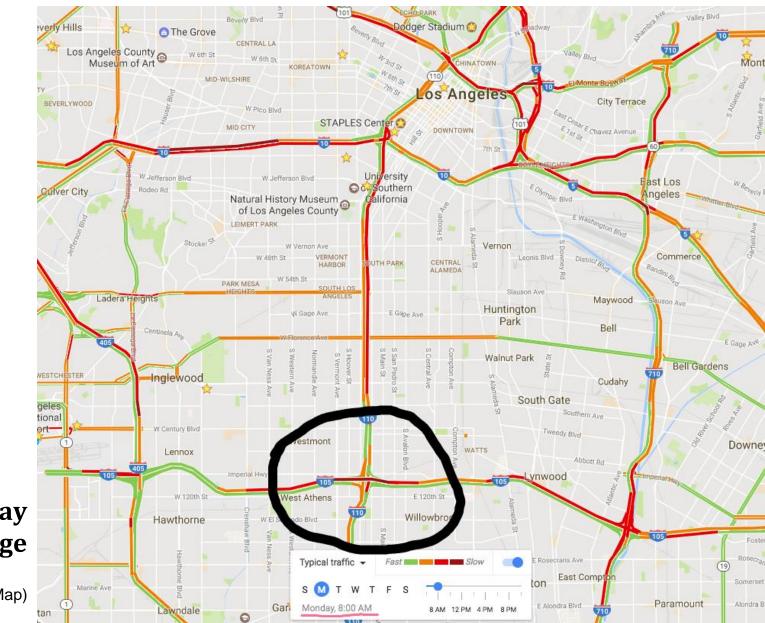
Outline

- Introduction and Background
- Platoon-Wide Eco-CACC Protocol
- Preliminary Evaluation and Results
- Conclusions and Future Work

Outline

- Introduction and Background
- Platoon-Wide Eco-CACC Protocol
- Preliminary Evaluation and Results
- Conclusions and Future Work

UCR College of Engineering- Center for Environmental Research & Technology


105/110 freeway interchange

(Source: Google Map)

UCR College of Engineering- Center for Environmental Research & Technology

105/110 freeway interchange

(Source: Google Map)

Wasted Fuel and Wasted Time

- In 2016, Los Angeles tops the global ranking with 104 hour/commuter spent in traffic congestion
- In 2014, 3.1 billion gallons of energy were wasted worldwide due to traffic congestion
- In 2013, fuel waste and time lost in traffic congestion cost **\$124 billion** in the U.S.

Motivation of the Research

- Expand existing transportation infrastructure: costly, and raise negative social and environmental effects
- Develop Intelligent Transportation Systems:
- Improve traffic safety
- Improve traffic mobility
- Improve traffic reliability

Automated Vehicle Technology

Definition of automated vehicles

At least some aspects of a safety-critical control function (e.g. , steering, acceleration, or braking) occur without direct driver input

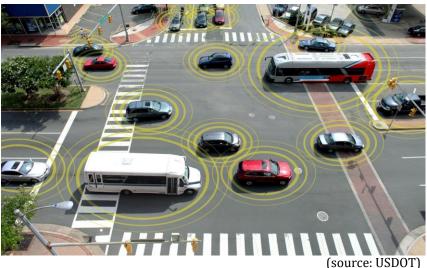
• Sensing techniques

Radar, Lidar, GPS, odometry, computer vision, etc.

• Level of automation by SAE

- Level 0: No Automation
- Level 1: Driver Assistance
- Level 2: Partial Automation
- Level 3: Conditional Automation
- Level 4: High Automation
- Level 5: Full Automation

Connected Vehicle Technology


• Definition of connected vehicles

Vehicles that are equipped with Internet access, and usually also with a wireless local area network

Communication flow

- Based primarily on dedicated short-range communications (DSRC)
- Between vehicles (V2V)
- Between vehicles and infrastructure (V2I/I2V)

Merging of Connectivity and Automation

Automated Vehicles

- **Pros**: In general, partial or full vehicle automation can help **safety**
- <u>Cons</u>: <u>Mobility and environmental impacts</u> may remain the same or could even get worse, e.g., adaptive cruise control (ACC) has been shown to have negative traffic mobility impacts

Connected Vehicles

- **<u>Pros</u>**: Introduction of a significant amount of **information** to support decision making
- <u>Cons</u>: Increase in the driver's cognitive load, thus causing extra distraction and system disturbance
- Therefore, a potentially better solution: Connected + Automated

Merging of Connectivity and Automation

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Vehicle

Communicates with nearby vehicles and infrastructure

Connected Automated Vehicle

Leverages autonomous and connected vehicle capabilities

U.S. Department of Transportation ITS Joint Program Office

From CC to ACC to CACC

• Cruise Control (CC):

Vehicle maintains a steady speed as set by the driver

• <u>Adaptive</u> Cruise Control (ACC):

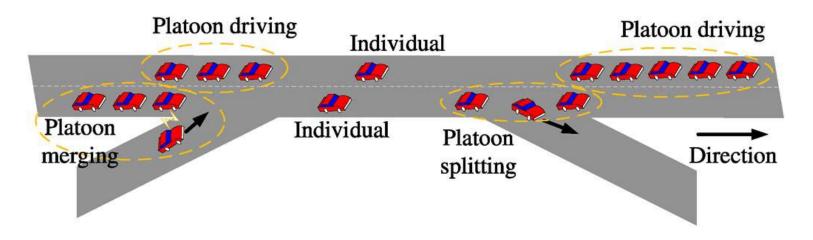
Vehicle automatically adjusts speed to maintain a safe distance from vehicle ahead


• <u>Cooperative Adaptive</u> Cruise Control (CACC)

UCR College of Engineering- Center for Environmental Research & Technology

From CC to ACC to CACC

Adaptive Cruise Control (ACC)



UCR College of Engineering- Center for Environmental Research & Technology

Cooperative Adaptive Cruise Control (CACC)

- Take advantage of the Vehicle-to-Vehicle (V2V) and Infrastructure-to-Vehicle (I2V) communication
- Form platoons and driven at harmonized speed with smaller time gap

(D. Jia et al., 2016)

Cooperative Adaptive Cruise Control

- Safer than human driving by taking a lot of danger out of the equation
- Roadway capacity is increased due to the reduction of inter-vehicle time gap
- Fuel consumption and pollutant emissions are reduced due to the mitigation of unnecessary stop and go, and aerodynamic drag of following vehicles

Energy Perspective of CACC

- Much research has studied stability, communicability, safety, mobility, driving comfort, etc.
- Little has focused on energy-efficient strategies/maneuvers
- Subsequent study of the USDOT's AERIS (Applications for the Environment: Real-Time Information Synthesis) program
- Energy efficient can be achieved by
 - Congestion mitigation
 - Speed management
 - Shock wave suppression

Outline

- Introduction and Background
- Platoon-Wide Eco-CACC Protocol
- Preliminary Evaluation and Results
- Conclusions and Future Work

Platoon-Wide Eco-CACC Protocol

- Different stages of the CACC along freeway
 - Platoon formation
 - Platoon in-operation
 - Platoon dissolution
- Different protocols for the involved vehicles
 - Sequence determination
 - Gap closing and opening
 - Platoon cruising with gap regulation
 - Platoon joining and splitting
- Assumption: CACC-enabled identical vehicles

• Gap closing process: a following vehicle tries to catch up with its preceding vehicle from a certain distance

Accelerate to gain a large speed difference Cruise at this rather high speed to shorten the gap Decelerate to the same speed as its preceding vehicle

• Given relative speed ΔV_0 and relative distance ΔD_0 at time t = 0, the planned trajectory for the gap closing controller can be determined by solving the following optimization problem

$$\min \Delta V_{h0} \quad \text{subjects to} \tag{1}$$

$$\Delta V(t) = \begin{cases} \frac{1}{2} (\Delta V_{h0} + \Delta V_0) - \frac{1}{2} (\Delta V_{h0} - \Delta V_0) \cdot \cos(m \cdot t), t \in [0, \frac{\pi}{m}) \\ \Delta V_{h0}, t \in \left[\frac{\pi}{m}, t_1\right) \tag{2} \end{cases}$$

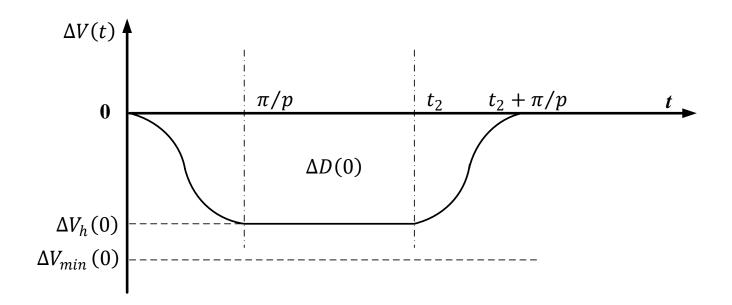
$$\frac{1}{2} \Delta V_{h0} + \frac{1}{2} \Delta V_{h0} \cdot \cos[n \cdot (t - t_1)], t \in [t_1, t_1 + \frac{\pi}{n}) \\ \frac{\pi}{2m} (\Delta V_{h0} + \Delta V_0) + \Delta V_{h0} \left(t_1 - \frac{\pi}{m}\right) + \frac{\pi}{2n} \Delta V_{h0} = \Delta D_0 \tag{3}$$

$$\Delta V_{h0} \leq \Delta V_{h0} \leq \Delta V_{h0} = 2 \text{ and } t_1 + \frac{\pi}{n} \leq t_1. \tag{4}$$

$$\Delta V_0 \le \Delta V_{h0} \le \Delta V_{max,0} \text{ and } t_1 + \frac{1}{n} \le t_{th}$$
(4)

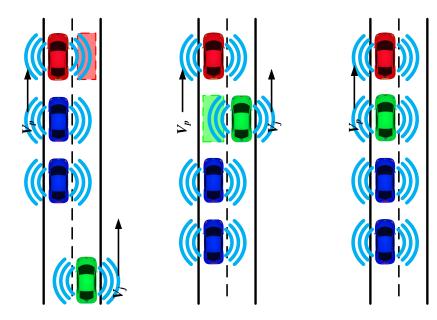
$$0 \le \frac{m}{2} (\Delta V_{h0} - \Delta V_0) \le a_{max} \text{ and } 0 \le \frac{n}{2} \Delta V_{h0} \le |a_{min}|$$
(5)

$$\frac{m^2}{2}(\Delta V_{h0} - \Delta V_0) \le Jerk_{max} \text{ and } \frac{n^2}{2}\Delta V_{h0} \le Jerk_{max}$$
(6)

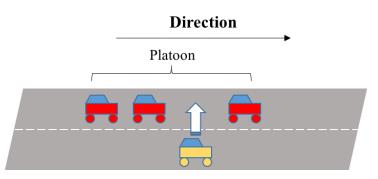


				Variable	Meaning
				ΔD_0	Difference between the initial gap and the desired gap of two consecutive vehicles
				ΔV	Speed difference between two consecutive vehicles
				ΔV_0	Initial speed difference
				ΔV_h	Optimal speed difference peak calculated at time $t = 0$
				$\Delta V_{max,0}$	Largest speed difference (at time $t = 0$) constrained by the speed limit posted on the roadway
$\Delta V(t)$				t _{th}	Time threshold to complete the gap closing maneuver
$\Delta V(t)$ $\Delta V_{max}(0)$ $\Delta V_{h}(0)$	[<i>m</i> , n	Angular frequencies of trigonometric functions
		ļ	<u>+</u>	a _{max} , a _{min}	Maximum and minimum acceleration (\pm 2.5 m/s ²)
		 		Jerk _{max}	Maximum change rate of acceleration in time (10 m/s ^{3})
$\Delta V(0)$		$\Delta D(0)$			
0					
Ŭ ()	π/m	t_1	$t_1 +$	$-\pi/n$ t

• Similar to the energy-efficient trajectory designed for gap closing, gap opening can be formulated with the constraints of another piecewise trigonometric function

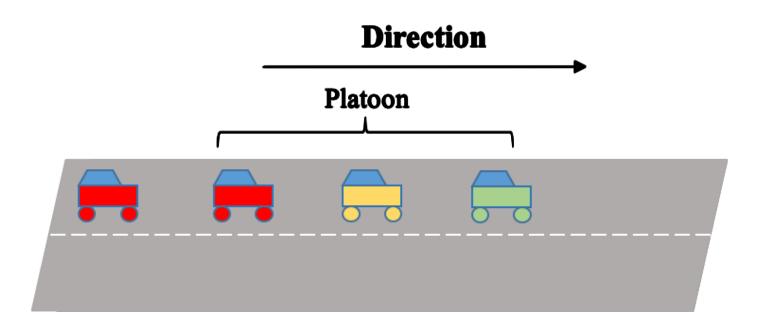


Platoon Joining and Splitting


- Four different cases for the lane change within the platoon maneuvers:
 - Free-agent-to-free-agent lane change
 - Free-agent-to-platoon lane change
 - Platoon-to-free-agent lane change
 - Platoon-to-platoon lane change

Platoon Joining and Splitting

• Platoon Joining



- 1. Vehicle *i* communicates with the platoon and decides the *j*th vehicle of the platoon.
- 2. A "ghost" vehicle with respect to vehicle j 1 in the platoon will be created on the lane vehicle *i* is on.
- 3. Vehicle *i* autonomously adjusts its absolute position and velocity with the "ghost" vehicle by the proposed gap closing protocol.
- 4. A "ghost" vehicle with respect to vehicle *i* is created in front of vehicle j + 1, and vehicle j + 1 starts to create a gap for vehicle *i* by the proposed gap opening protocol.
- 5. Vehicle *i* joins the platoon.

Platoon Joining and Splitting

• Platoon Joining

Outline

- Introduction and Background
- Platoon-Wide Eco-CACC Protocol
- Preliminary Evaluation and Results
- Conclusions and Future Work

System Preliminary Evaluation

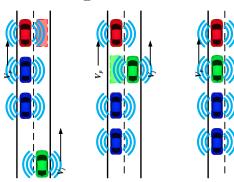
- MATLAB/Simulink is used to conduct numerical simulation under two different scenarios
 - Platoon formation (gap closing)
 - Platoon joining (gap closing and gap opening)
- By using Motor Vehicle Emission Simulator (MOVES), results of platoon-wide energy consumption and pollutant emissions are compared with the distributed consensus-based CACC system

Platoon Formation

 The following vehicle conduct acceleration and deceleration processes to close the (7.58-0.9=) 6.68 s inter-vehicle time gap

Parameters	Value
Number of Vehicles	2
Length of Vehicles	16.4 feet
Length of Simulation Segment	1 mile
Initial Speed of Vehicles	45 mph
Final Speed of Vehicles	45 mph
Initial Inter-Vehicle Time Gap	7.58 s
Final Inter-Vehicle Time Gap	0.9 s

• The MOVES model is adopted to perform the multiple scale analysis on the environmental impacts


	HC (g)	CO (g)	NO _x (g)	CO ₂ (g)	Energy (kJ)
Consensus-CACC	0.146	4.68	0.758	684.2	9514.3
Eco-CACC	0.142	4.78	0.747	674.3	9376.6
Improved %	2.74	2.14	1.45	1.45	1.45

Platoon Joining

• A free-agent vehicle tries to join a threevehicle platoon

Parameters	Value
Number of Vehicles	4
Position of Free-Agent Vehicle in Platoon after Joining	2
Length of Vehicles	16.4 feet
Length of Simulation Segment	1 mile
Initial Speed of Free-Agent Vehicle	65 mph
Initial Speed of Platoon Vehicles	45 mph
Final Speed of Platoon Vehicles	45 mph
Initial Inter-Vehicle Time Gap Between Free-Agent Vehicle and Platoon Leading Vehicle	2.7 s
Final Inter-Vehicle Time Gap Between Free-Agent Vehicle and Platoon Leading Vehicle	0.9 s

• The MOVES model is adopted to perform the multiple scale analysis on the environmental impacts

	HC (g)	CO (g)	NO _x (g)	CO ₂ (g)	Energy (kJ)
Consensus-CACC	0.312	10.14	1.425	1327.8	18462.7
Eco-CACC	0.291	8.42	1.382	1298.9	18061.6
Improved %	6.67	16.96	3.02	2.18	2.17

Outline

- Introduction and Background
- Platoon-Wide Eco-CACC Protocol
- Preliminary Evaluation and Results
- Conclusions and Future Work

Conclusions and Future Work

- Gap-closing and gap-opening controllers have been designed
- Platoon joining and splitting protocols have been developed
- Simulation studies showed the proposed Eco-CACC system may reduce platoon-wide energy consumption by 1.45 % in platoon formation scenario, and by 2.17 % in platoon joining scenario
- Sequence determination of platoon can be further studied
- Other issues (e.g. road grade, communication delay) can be further addressed in the field implementation
- Besides the cyber-space of vehicles, the physical-space of vehicles (vehicle dynamics) can be included in the future

Q & A Time

Thank you very much for the attention!

Website

