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Background Traffic conflict is the most fundamental problem

in transportation science and engineering

At least in theory, it is possible to mitigate or
eliminate traffic conflicts, in the mixed traffic
environment with connected automated vehicles
(CAVs) and human-operated vehicles (HVs)

The proposed mechanism is called Cooperative
Decision-Making for Mixed Traffic (i.e., CDMMT)
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Background

China, EU and US will start to make highly automated cars
around 2020-2025

DA/PA — CA/HA — FA

Information exchange — sensing and fusion — cooperative
decision-making and control
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Source: Chinese National Standard for CAV Industry
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Key Challenges

Technical difficulties (hardware, sensing, communication)

Mixed traffic (human are myopic, stochastic, and non-cooperative)

System-efficient (cooperation is not necessarily system-improving)

Ethical dilemma (puppy vs. a group of people)

e ORIVE I X D FYEO o Q

GM's Autonomous Car Gets

Confused Stops for Lunch |

GM's latest autor 0 s found the
HH

Apple self-driving test car gets rear-ended by a
Nissan Leaf in first ever crash

Predictably, it was a human’s fault

By Nick Statt | @nickstatt | Aug 31, 2018, 7:18pm EDT
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CDMMT: A Bi-level Programming Framework
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upper-level: merge sequencing

bi-level optimization \

1
'Sun Z., Huang, T., & Zhang, P. (2020). Cooperative decision-making for mixed traffic: A ramp merging E
Iexample Transportation research part C: emerging technologies, 120, 102764. i

lower-level: trajectory design
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Upper-level: merge sequencing (filling n ramp vehicles into m+7 gaps)

fre(si) = D Akm{iﬁc \ k}{Dk(sk;xk) T2 T N VAT main|ing N2
X ) = WMoy k” kfI klead klead
NN e O] & Ej BRI s
S.L. fo(S()) =0 AN r /

si;=m+1

Sk+1 = Sk — Xk +1,k = 1,2,...,n—1

Dy (s, 1) = gt (Pff) 1=
fi(si): The minimum system cost from the initial stage to stage k
' s,: The number of available mainline gaps for ramp vehicle k
' xx: The gap taken by ramp vehicle k
’ Dk The cost of the merge maneuver pertaining to ramp vehicle k
gtf- The objective function of the lower-level trajectory design problem

pertaining to ramp vehicle k
SN The cost for mainline vehicles that are not directory involved in
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Cooperative Ramp Merging

Case-based control strategies

Conditions Cooperative Merging Control Strategy
C2: HAA E1R4: velucle 2 slower, vehacle 3 slower;
B2 velucle 2 faster, vehicle 3 slower;
B sehucle 7 undeterpuned welicle 3 sloger
C3 AHA B1: Vehacle 1 faster:

B2 Vehicle 3 slower
B3RS Velucle 1 faster & Vielucle 3 slower

C4: AAA B1: Vehicle 1 faster, Velucle 2 slower, Velacle 3 slower
B Wehacle 2 faster, Vehaele 3 slower, Velucle 1 faster;

C5 HAH B1: Vehacle 2 slower:
B2 Velacle 2 faster
B3 Vehicle 2 undetermanad:

R3R4: Vehicle 1 faster, Vehicle 2 undstermaned, Vehicle 3 slower

o AHH R1FS3: Velele 1 faster

CT: AAH R1: Vehlacle 1 faster, Velucle 2 slower,
B Vehicle 1 faster, Velucle * faster
B3 Vehacle 1 faster, Velucle 2 slower

CH: AHN R 1IR3 Vehicle 1 faster
C AAN BRI Viehicle 1 faster, Vehicle 2 slower
Cli: HAM B1ES: Velucle 2 slower
Cl11; NHA YR Vehicle 3 slower
Cl12: NAA BLARI: Viehacle 2 faster, Velucle 3 slower
Cl3: NAH BRI Velacle 2 faster

for a CAV

“N stands for “Null” it 15 wsed as a placeholder. “H stands for a human-operated velacle, “A™ stands

E 1: vehecle 2 s “too close™ to vehocle 1
R 2 ovehicle 2 s “too close” to velucle 3

R 4 vehiele 2 15 “too close” to velaele 1 and vehiels 3

B 3: vehscle 2 15 neather “too close™ to velucle 1 nor velucle 3, but the it 1s uncomtortable to merge

"
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Lower-level: trajectory design (multi-object optimal control)

min {dk(Ptr £)+ a9t (pio)}, al = 0
9t (or) = e s | PSR

0, qf = ¢

g{‘o(p{fo) = Ziex(vi(t(lf) —v)%,vk=12,..,n

pE ={v;(t§). L(t§)|i e K} vk =12,..,n

State transition: NI N2 NN N N o N2 NN
TINRE t]’f: The time stamps of a trajectory design period

ps: The states of all vehicles in set K at time t

Lt +1) = Li(t) —v;(t)T — 0.5u;(t)7?,
qi: The set of decisions of vehicles in set K at time t

VieK,t = 1:(’,‘,1,“(';c +T...,t}‘—r,k =12:-,n

e.
vt + 1) = v;(t) + w (O, % ]E)eswed speed |
VieKt=tf . tf-tk=12n : Uk(tf) Merging utility

Final-state constraint:

Lateral dynamics
@2 NN
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Lower-level: trajectory design (multi-object optimal control)

: . \ X - Tlead

CEU Longitudinal dynamics NS

Non-cooperative: Non-cooperative:

uk(t + 1X= Umic (Sk (t); Uk(t), (%] (t)) Ujlead (t Sz 1) = umic(sklead (t), VUjlead (t), Ul(t))
Faster:

Faster:

Ufclead (t) S uklead (t)T = Vmic (Sfclead (t), Uklead(t), Ul(t))
Ufclead (t) + ul}lead (t)T < ve

Vi () + up (T = Vi (S (), vie (8), v (2))
v (t) + up ()7 < v°

Slower: Vehicle k/°!

Vi () + upe ()T < Vi (S (0, v (), v1(2)) ,

v (8) + u, (H)T = 0 Non-cooperative:

Undetermined: Uz rot(t + 1) = Upic(Spro(6), viror(t), v, (1))
v (t) + up (t)T < v° .

v (t) +u, ()T =0 Slower:

’Ufcfol(t) + ukfol(t)’[ >0
Visor(£) + Upror(D)T < Vi (S ror (), viror (), vy (t))



IEEE IV 2021 Cooperative Ramp Merging

Lateral dynamics Longitudinal dynamics

=Newell' s simplified car following model

OEINORR L () =l )1, |
N B R Ve )

=\ =Gipps
mainline I::fkm (©),9,0 (1), 0, (1) : pp
|
| «IDM/EIDM
/ I::(Ik(t),vk(t),uk(t) /
| |

ramp merge section

\

! ; Umic (S (£), v (£), v, (¢))
i [ ()] > bsage
LR @701 (6)] > boase i Dsafe: The maximL_lm allowable deceleration rate
N NN Zklead(t) _ 1 < IA,V ked, lch: Eq.w_valent vehicle length i
VRIS =N NP SN i Lo: Minimum gap for CAVs ;
NS it AN N ' L' : Minimum gap for HVs |
= il s | 11(1)- Safety parameter i
=1, Lra(®) = () = g < L,V KTy ' 11,: Politeness parameter i
L1 — i (O] — 12 |ﬁkfol(t)|; AN NN IS AN RN SN N U
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Results - q1:1000veh/h q2:1000veh/h 50% CAV

Speed profiles and acceleration profiles Speed contours
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Results — Flow-Density Diagrams
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' Sun, Z., Huang, T., & Zhang, P. (2020). Cooperative decision-making for mixed traffic: A ramp merging

Iexample Transportation research part C: emerging technologies, 120, 102764.

______________________________________

« Capacity increases
with the increase of
CAV penetration (up
to about 20%)

« CDMMT can further
iImprove the capacity
by about 10% - 15% in
the case of high
penetration
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System Stochasticity is not considered in the deterministic-CDMMT mechanism

The centralized control improves system-efficiency, however, computational
efficiency becomes a critical issue

= == S T TRAFFIC JAM
4 Sy, S Solution:

» Closed-loop control (model predictive
control)

> Hybrid Centralized-Decentralized system

> Use computational-efficient solution
approach

PARK&RIDE

i Gao, Z., Li, Z., Huang, T., & Sun, Z. (2020). Cooperative Ramp Merging In Mixed Traffic Closed-loop Optimal Control i
i and Real Time Computing. Presented at 100th Annual Meeting of the Transportation Research Board, Washington, i
1 D.C., 2021. l
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Hybrid Model Predictive Control and Real Time Computations

5 Roadside infrastructure

—~— Retumn the cost of lower-level b:QQIerﬁ“::
R R LRt oo i TS 4 o A
assign the lowerdevel computing task™ ™~~~ ‘Roadside infrastructure
[ 7\
D HY

N\ (b)

Merging sequenrcie_déc_:vé'io'r_l1m'p1émem ~2:¢ Roadside infrastructure

- c AV
aup HY

N\ (©)

Step 1. At time t, the communication between the RSU and the
CAVs in the communication zone is established. Then the states
of vehicles will be adopted and shared by RSU (centralized
controller).

Step 2. As shown in the Figure(b), after the establishment of
communication, the centralized controller will assign the
specific lower-level problem computing tasks to OBUSs
through the iteration of upper-level problem. All the OBU
controllers will receive the assignment of the lower-level
problem and the information of neighboured vehicles.

Step 3. OBUs solve the lower-level problem and return the
optimal trajectory consisting of speed and location to the
centralized controller.

Step 4. RSU solves the upper-level sequencing problem
according to the feedback in Step3 and transfers the optimized
merging sequences to CAVs. Just as shown in Fig.(c), ramp CAV
determines the specific merging gap and implements the lower-
level longitudinal control after receiving the order of RSU. Then
go to Step 1 (t = t+1).
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TX¥. Control horizon
T,: The predictive horizon

ATE, L (to + TF + 2|to) = 1o A I (to + TE|to) < L). L(to + TF|to)

L (to + T¥|to) denotes the location of vehicle k;
(ot (to + TX|t,) represents the predictive time to + T at real

time t,;

1 fol Jlead
Tckf N Tck = TCk

c:w Tp T TCn

l..the end of ramp control zone
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Results — Flow-Density Diagrams
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Results — Average Computational Time (Seconds)

Vehicle per group: 16; Traffic flow: 1500:1500

Average Calculation time of Centralized Calculation time of hybrid
Lower-level system (Seconds) system (Seconds)
Pene | optimization
casesper | DMC | DP Bang-Bang DMC | DP Bang-Bang
timestamp
20% 1.03 0.056 | 0.31 0.0378
40% 1.57 0.094 | 0.71 0.0588
60% 1.61 0.095 | 0.82 0.0846 0.042 | 0.256 0.0374
80% 1.56 0.10 | 0.87 0.1078
100% 1.76 0.11 | 1.43 0.1135
Vehicle per group: 50; Traffic flow: 1500:1500
Average Calculation time of Centralized Calculation time of hybrid
Lower-level system (Seconds) system (Seconds)
Pene | optimization
casesper | DMC | DP Bang-Bang DMC | DP Bang-Bang
timestamp
20% 1.89 0.11 | 1.27 0.06
40% 2.73 0.16 | 2.12 0.11
60% 3.41 0.20 | 3.01 0.16 0.041 | 0.254 0.0379
80% 3.67 0.24 | 3.48 0.23
S [ MY N3 HEX 5 - N N I

Gao, Z., Li, Z., Huang, T., & Sun, Z. (2020). Cooperative Ramp Merging In Mixed Traffic Closed-loop Optimal Control and
Real Time Computing. Presented at 100th Annual Meeting of the Transportation Research Board, Washington, D.C., 2021.
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In academia, CAVs are always designed to be Microscopic Right-Of-Way

more cooperative, which conflicts the self-interest Trading Mechanism

nature of human @
Under the assumption of rationality, both CAVs Receiver Payer
and HVs can behave cooperatively (i.e., yielding

or s!owing down) if enough incentive can be mainine [ .. Rece';ef > it
provided W

|
|
_[_Payer |
merge section

ramp|::]-" =2 e >
|

Zy Z

The proposed mechanism is called Microscopic
Right-of-Way Trading Mechanism for Cooperative

Decision-Making (i.e., Micro-ROWTM) ﬁ\é;/-C;%a?éa;gp?e\r/:t?\g(i/sehicles

i Sun, Z., Qin, Z., Ma, R., & Gao, Z. (2020). Microscopic Right-Of-Way Trading Mechanism for Cooperative Decision-Making:
i Theories and Preliminary Results. Presented at 100th Annual Meeting of the Transportation Research Board, Washington,
1 D.C., 2021.
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+ Right-of-way trading

+ Mixed traffic (NCVs & CVs)

+ Game-theoretic

¢+ Individual rationality & system-efficiency

+ Dominant-strategy incentive-compatibility
(DSIC) under incomplete information

¢ Envy-minimization




IEEE IV 2021 Microscopic Right-of-Way Trading Mechanism

o LU\ Vit Psychological cost Travel time cost Fuel consumption cost
Definitions = il

= =t/ ) =
+|K; (Zt tog]() Zt tog](t)} =17 X Ac;j

- : S =f _ 70 f 0
Total cost of payer (A)/receiver (B): AU;=n;Ae;|+o; (tj SRSt )

. A V. A T ol
Payoff of payer: N, 2 AU, —p =14, X Ac, P I nj: Unit price of psychological change;

I Aej: Psychological change component;

M . A e T
Payoff of receiver: Ny 2 AUg +p =15 XAcg +p o TS fime:

| k;: Gas price;
Total avenue: Aw 2 N, + Ny =14 X Acy’ + 15 X Acg’ RS i
7j: Reported attributes set;

Tl‘ading rules I AC] Basic cost changes set;

|
1. Equal Allocation: ReITEIORECSE\NIINNE=NNIHINE=

The payoff of payer and receiver is equal (i.e., half of the total revenue).
2. Double auction:
The trading price is a linear combination of the payoffs reported by payer and receiver.
3. Dynamic Negotiation:
Imitating the process of bargaining in reality to determine a trading price that both payer

and receiver are satisfied with.
4. A constrained optimization method:

Using the optimization method to find a trading price meets the conditions of individual
rationality, system-improvement, and DSIC to minimize the envy.
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i Sun, Z., Qin, Z., Ma, R., & Gao, Z. (2020). Microscopic Right-Of-Way Trading Mechanism for Cooperative Decision-
RESUltS E Theories and Preliminary Results. Presented at 100th Annual Meeting of the Transportation Research Board, Wash
1 D.@., 2021. (b)

The travel time and fuel consumption saved by
each group optimization under different flow
ratios. (g;: mainline flow, g,: ramp flow)

100 A

75 q1: g2 = 900:900 (light traffic): Each group saved
2.29 seconds and 35.65g fuel on average;

q1: g9z = 1300: 1000 (heavy traffic): Each group
saved 1.96 seconds and 38.55g fuel on average;

System Travel Time Saving (s)

50

System Fuel Consumption Saving (g)

25 A

0 TT:qZ=900:900 q-:qZ=1000.500 T1-qZ=1100.700 q1-q2=1300-1000 0 q1-q2=900-900 q1-q2=1000.500 qT02=1100.700 qTq2=1300-1000
]l 3140 2884 8773 7835 ]l 142592 181418 69134 154197
3 Group(s) 7.820 7794 8.040 5491 3 Group(s) 124 640 6711 25.449 106538 Benefits (RMB)
2 Group(s) 5.620 1284 2540 0510 2 Group(s) 56.061 88.756 3677 71726

1 Group(s) 5710 0210 0930 0254 1 Group(s) 25176 25155 10.076 30121 ]
0 Groupl(s) 0.000 0.000 0.000 0.000 0 Group(s) 0.000 0.000 0.000 0.000 1 90
1 80
0.8
170
5 1 60
Value of time: 80 RMB/hour 0.6 ™

Fuel cost: 7 RMB/Liter
Applying CDMMT Ramp Merging on congested ramps, the direct cost
saving is around 80-7100 RMB/hour/section

Applying CDMMT Ramp Merging on the 47 merge section of the 2"d ring 0.2
road of Chengdu, the direct cost saving is around 7M RMB per year

" 40

=
=

30

Penetration of CVs

20
10

0

0.5 1 15 2 25 3
(¢) Ratio of mainline to ramp
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This underscored the necessity of Dbetter

understanding the heterogeneities of human driving
O According to Litman’s _pred!ctlon, behaviors
by 2040, 50% of traffic will be T RN T \.
CAVs (Litman, T. ,2014) i ata Prenarin i Smoothing for L Semmple extraction |—— Classified by . CC.CT |
O The emergence of connected e i)i — e )
automated vehicles (CAVS) has . l N e\ o\ oo\ e
led to the problem of mixed | . [t e s |
traffic, i.e., traffic comprised of | | Model Calibration | | | [ rvDoHRIDM | e o
conventional human-operated | SN \NZlIIE [Gtm*’thnm)] _________________
vehicles (HVs) and CAVs(Huang, i ,l VA=V TETA . A
AU 5 e I | e B
O In mixed traffic, the decision- | | Classified Model i); diving sle I — =3 <hyxk > [ distibution | |
making and/or control of CAVs i SN N s ezl N7 A S\
largely depends on accurate i l i "’ ___________
description and prediCtion of i i [ Feasibility analysis ] {Compare with UCF model ]
HVs’ behaviors (Chen, D. et ; Validation > SIS —
al,2020; Jin, S. et al,2020). ZZAIE ‘ e = :
Conclusions

E Sun., Z., X. Yao, Z. Qin, P. Zhang, Z. Yang. (2021). Modeling Car-Following Heterogeneities by Considering Leader—
i Follower Compositions and Driving Style Differences. Transportation Research Record: Journal of the Transportation
i Research Board, 2021. 2021: 1-14.
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» Model Calibration results
« Some parameters are highly consistent across the board, while others are quite different in different
leader-follower compositions

> PCA and FCM results
The orders of Weighted contribution of feature (WCF) are quite different across different compositions.
« Such clustering results were attributed by the underlying driving style differences.
« The results are also consistent with the commonly recognized "aggressive-normal-mild” driving
style classification.
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> Distribution fitting for car-following parameters
« Stable distribution has the best performance compared to the other distributions

» Comparisons between CCF and UCF models

« In all cases, the estimation errors of CCF models are much smaller compared to UCF model, clearly
show that the proposed CCF models can more accurately describe the heterogeneities in car-
following behaviors.

> Transferability analysis using US-101 dataset
« The CCF models calibrated using FVD and IDM in general outperforms the GHR model.

« The estimation errors of CCF models are much smaller compared to UCF model

Model Leader- RMSEccr / RMSEcr Improvement of
! £ follower Normal Mild Aggressive RMSE
£ o R compositions
A /\\\ FVD c-C 0.29/0.40 0.45/0.57 0.36/0.53
/ j C-T 0.42/0.62 0.31/0.60 0.44/0.61 20.79%-49.05%
| T-C 0.39/0.50 0.35/0.61 0.41/0.66
ST T GHR c-C 0.40/0.53 0.56/0.68 0.55/0.68
v C-T 0.32/0.64 0.52/0.62 0.40/0.64 14.94%-50.27%
T-C 0.59/0.69 0.49/0.66 0.57/0.62
15 (IS COIEEN IDM c-C 0.33/0.55 0.47/0.61 0.41/0.67
,r*‘-\ it C-T 0.43/0.67 0.27/0.53 0.45/0.65 19.21%-48.26%
i e T-C 0.52/0.64 0.43/0.65 0.40/0.67
[}

T T
. [EEErvD [ IGHR EHIDM]

0

30

5 10 15 20 25 30
As

(b3)C-CfAggressive

cC (E=0 T-C (o C-T I=C (e (E=Tr T=C
UCF CCF/Normal CCEF/Mild CCF/Aggressive
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IEEE 1V 2021 Short-term Trajectory Prediction

Accurately predicting trajectory of
surrounding manual vehicles is the key
premise to ensure that the CAVs can plan its
own trajectory safely and reliably

€ Learning-based LSTM network (GR-LSTM)

local neighborhood vehicles &
(o8 @ e - - (C o0 ] @ vehicles as far ahead as sensors
can detect
@D ) || - e D

local neighborhood

' Zhao, R., Gao, Z., Sun, Z. (2021). Modeling spatio-temporal interactions for vehicle trajectory prediction based on graph :
' representatlon Iearnlng IEEE ITSC 2021. i
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Architecture of GR-LSTM model

Encoder Graph representation learning Decoder
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Short-term Trajectory Prediction

hk-1
"o
[ ] Q ? 7Full connect layer
| g
Cy LSTM LSTM cen LSTM
IX;TTOBS IX;?_TObsH ‘[ )(5:3

Graph representation learning

decoder

E - @)
LSTM o< @
Yo g > :
- 3 S e - ~ - .
conca >4
LSTM - Aggregatep’- ~) @ # - @

The LSTM Decoder

decoder K=m

Where: X, = [th’_TObS Tl 5 "',Xs?],VUi € V, where Xﬁf = ( 5?,)'1,1)

h;nj_l - LSTM(le, ho) t € {to + W to + Tpred}

h¥: @, = Aggregator(hk~L, b1y v € W (), k=12..m—1

h¥ = o(W* - concatenate(hf ", hy (,y)), k= 1,2..m—1

hmt 1

N (v = Aggregator(hii ™t s; 1) Vv € W (vs), t € {tg + 1.

tO + Tpred}
C,=o0 (W - concatenate (h};’"s“l, h,'\r,l(";;)l ))
S¢ = LSTM(s¢_1,Ce),t € {to + 1 ...to + Tprea}

Yt = MLP(s¢; W)
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Results

| Van|IIa LSTM (V-LSTM)[1]: uses a sequence of past trajectories to predict a sequence of future trajectories
Baselines: | Social LSTM (S-LSTM)[2]: model of an LSTM-based neural network with social pooling for pedestrian trajectory :
prediction
| Interaction-aware Kalman neural network (1akKNN)[3]: added a Kalman filter layer to the interaction-aware layer |
I Convolutional social pooling LSTM (CS-LSTM): LSTM with convolutional social pooling and maneuvers, |
| mcludmg the maneuver-based decoder used for generating a multimodal predictive distribution |

QUANTITATIVE RESULTS OF OUR GR-LSTM COMPARED WITH THOSE OF BASELINE
APPROACHES. EVALUATION METRICS ARE REPORTED IN TERMS OF RMSE IN METERS.

Quantitative Results:
Prediction
honzon(s) V-LSTM S-LSTM CS-LSTM

0.74 0.68 0.62 0.63 0.68
1.44 1.28 1.03 1.27 1.17
2.57 2.27 1.97 2.09 1.74
4.23 3.32 2.93 3.12 2.64
5.92 4.46 4.12 4.27 3.32

S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi, "Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture," in 2018 IEEE Intelligent Vehicles Symposium (1V), 2018: IEEE, pp.
1672-1678.
N. Deo and M. M. Trivedi, "Convolutional social pooling for vehicle trajectory prediction," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 1468-1476.

C.Ju, Z. Wang, C. Long, X. Zhang, G. Cong, and D. E. Chang, "Interaction-aware kalman neural networks for trajectory prediction,”" arXiv preprint arXiv:1902.10928, 2019.
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Short-term Trajectory Prediction

Results

Relationship Between The Number Of Rows Of Forward Vehicles and The Prediction Accuracy

QUANTITATIVE RESULTS OF THE SELECTION OF DIFFERENT
ROWS OF FORWARD VEHICLES IN THE GR-LSTM MODEL. EACH

CELL IN THE TABLE IS THE RMSE/ADE

0.69/0.47
1.35/0.79
2.10/1.02
3.27/1.34
4.27/1.63
5.74/2.10
7.68/2.62

0.68/0.46
1.22/0.73
1.82/0.94
2.66/1.18
3.46/1.45
4.44/1.79
5.82/1.96

0.68/0.47
1.17/0.70
1.74/0.91
2.64/1.14
3.32/1.38
4.16/1.65
5.37/1.84

Prediction
horizon(s) GR-LSTM(0) GR-LSTM(1) GR-LSTM(3)

0.70/0.48
1.28/0.75
1.93/0.99
2.77/1.23
3.51/1.52
4.29/1.80
5.42/1.93

RMSE(m)

—a— GR-LSTM(0)

4 GR-LSTM(1) —— GR-LSTM(2)

Prediction horizon (s)
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Results
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Perception
Integration of traffic | Vehicle | | Driver | ' ' Environment |
decisions (strategic-level)
and vehicle control (tactical- e Referencegeneration
» Speed profile generation i 'TraJectory generation |
eel)/ || Y I SN S/ banannannannn Al IR ki
Vref Xref Yref

€ Cooperative trajectory [\

plannlng Control Stra’Egg}/ ____________________
& Control Strategy and Speed ' Longitudinal control E«JLHE Lateral control |

Planning = | 1T o I — B J .

g Ton, Tb’ Ra 5f gkln

# Vehicle kinematics modeland | | | vehice | I
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Vehicle Models: vehicle kinematics model & vehicle dynamical model

>y

@)

X, COS @
Y, |= sine |y,
@ tan o5 /1

State variables &, = [X,, Y., o]
Control variables v, = [v., §]"

mx =mye + Fxf,l + Fxf,r + Fxr,l + Fxr,r
my = —mx<p + Fyf,l + Fyf,r =+ Fyr,l + Fyr,r

I(p = a(Fyf,l + Fyf,r) Y b(Fyr,l + Fyr,r) + C(_Fxf,l + Fxf,r m Fxr,l V7 Fxr,r)
° 2 2
State-space expression ¢(t) = f;)(E(t), u(t))

State variables &, =[X,, Y., o]
Control variables v;;, = [v,., &
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Cooperative trajectory planning
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Results——trajectory planning
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Trajectory Tracking

Lateral Tracking vs. Station - DLC0703 Road Wheel Steer Angle - Front - DLCO7T03
Lateral distance to path - m Angle - deg
[—=— Wheel steer L1]
—8— Wheel steer R1
Jivreern LI
1 0 |=
0w —m—= %= 1
SN2 IS ZZZens s 27z i
' simulation results of | ;
i - H i i
 trajectory tracking .
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Trajectory Tracking

tn
Speed profile generation (Optimality Theory) w1 f (s")2dt — Measures of the speed

to / profile smoothness(comfort)
tn
Wy Jr (S”’)Zdt

to

Based on a given trajectory(S)
- » Cost Functiony

) jtn(S VN Measures of the trajectory
3 ), ref tracking error(MPC)

tn _
W, (Vonax — Vi)?dt_____, Measures of the trajectory
Lt tracking efficiency
— limiting-velocity of road V.
(Known) _
Vmax :> Vmax Srr”n(‘/l' ’ [/C)
L, limiting-velocity according to D:distance between rear wheels
the curvature of the road V. R:Turning radius

H:Height of car body center of
DgR .
V. = ST gravity to ground
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Trajectory Tracking——Current work e ——— -

1. Solving the optimal model of speed profile generation

Method: Dynamic programming/Quadratic programming
/QP+DP

2. Designing the speed tracking controller based on PID

3. Designing the longitudinal and lateral coupling controller

[E)Lve § - Lat. Pos. (Road) ve. Statio. || =] | B Sa=] | = = =@
Lateral offset e n path - 7

(Tracking a given trajectory with a desired speed profile) T ? . W i
. . . s A & A 1)
4. Evaluating the tracking performance of the designed LA ‘/ i
controller according to the joint simulation results - L oz
N =
/ - \:"‘{ _:-«-mrm

5 5
eeeeeeeeeeeeeeee
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Future directions

Integration of trajectory planning and trajectory tracking (considering

trajectory re-planning)

Time-delay systems
Game theoretical approach for microscopic right-of-way trading considering

heterogeneous users and bounded rationality

Stochasticity in the problem (HV, CAV)

Generalization: e.g., intersections

Road test experiments
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